
Fabio Falzoi

An Insight Into Go Garbage Collection

SAINT PETERSBURG
2019 NOVEMBER 1

Senior SwEng @ Develer

Experience with C, C++, Python and Go

Passionate about low level topics...

… and Garbage Collection!

$whoami

➣ Memory management in Go

➣ Go Garbage Collection

➣ Go GC Performance Impact

Roadmap

Memory Management in Go

Go compiler uses escape analysis to decide where to allocate objects

Go prefers stack allocations, but their size and lifetime must be known
at compile time

Escape Analysis rules are not part of the Go Language Specification. Do
not try to guess, ask the compiler instead

go build -gcflags=”-m -m”

Should I stack or should I heap?

Should I stack or should I heap?
type s struct {

 v int

}

func newStruct() *s {

 return &s{10}

}

Will it be allocated on the stack or on the heap?

type s struct {

 v int

}

func newStruct() *s {

 return &s{10}

}

func f() {

 x := newStruct()

 _ = x

}

$ go build -gcflags="-m -m"

./main.go:7:6: can inline newStruct as: func() *s { return &s literal }

./main.go:12:16: inlining call to newStruct func() *s { return &s literal }

./main.go:8:12: &s literal escapes to heap

./main.go:12:16: f &s literal does not escape

Escape Analysis in action

var g *s

type s struct {

 v int

}

func newStruct() *s {

 return &s{10}

}

func f() {

 x := newStruct()

 g = x

}

$ go build -gcflags="-m -m"

./main.go:9:6: can inline newStruct as: func() *s { return &s literal }

./main.go:14:16: inlining call to newStruct func() *s { return &s literal }

./main.go:10:12: &s literal escapes to heap

./main.go:14:16: &s literal escapes to heap

Escape Analysis in action

Stack is managed in frames: individual memory space for each
function call

Creating a new frame and invalidate one is just a matter of bumping up
or down the Stack Pointer register

Goroutine User Stack

Stack Frames
func main() {

 x := 10

 f()

 println(&x)

}

//go:noinline

func f() {

 y := 20

 println(&y)

}

Stack Frames
func main() {

 x := 10

 f()

 println(&x)

}

//go:noinline

func f() {

 y := 20

 println(&y)

}

Stack Frames
func main() {

 x := 10

 f()

 println(&x)

}

//go:noinline

func f() {

 y := 20

 println(&y)

}

frame for the f func is not deleted: the runtime simply updates the Stack
Pointer register value

Goroutine User Stack

Goroutine user stacks are dynamically resized and can grow up to 1GB
on amd64

Stack Split

Stack Split

Where does the memory for a growable goroutine stack come from?

Goroutine user stacks are backed by the Go heap!

For stack < 32 KB we have a per M cache, so to avoid locking (and
contention) in the common case

For stack >= 32 KB, or when the above cache is empty, we allocate
memory from a global pool

Stack Allocation Paths

Heap Allocations

Heap Allocations

Heap Allocations

Stack and Heap allocation patterns are similar

So, why stack allocations should be cheaper?

The main difference does not lie in the allocations, but in the deallocations

Destroying a stack frame means bumping up the Stack Pointer register

Instead, heap allocated objects are reclaimed through Garbage Collection!

Stack vs Heap - which one is cheaper?

Memory leaks are hard to debug

Go Garbage Collection is optimized for very low latency

Is Garbage Collection evil?

Go Garbage Collection

Mark & Sweep

Mark phase & Sweep phases

Mark phase Start from roots (global variables and goroutine stacks)
and mark each reachable object as alive

Sweep phase Check each allocated object, freeing it if it is not marked

Tricolor Mark & Sweep

● White set objects not marked

● Grey set objects marked, but we
have not yet scanned all their
referents

● Black set objects marked along
with all their referents

Tricolor Mark & Sweep

● White set objects not marked

● Grey set objects marked, but we
have not yet scanned all their
referents

● Black set objects marked along
with all their referents

Tricolor Mark & Sweep

● White set objects not marked

● Grey set objects marked, but we
have not yet scanned all their
referents

● Black set objects marked along
with all their referents

Tricolor Mark & Sweep

● White set objects not marked

● Grey set objects marked, but we
have not yet scanned all their
referents

● Black set objects marked along
with all their referents

Tricolor Mark & Sweep

● White set objects not marked

● Grey set objects marked, but we
have not yet scanned all their
referents

● Black set objects marked along
with all their referents

Tricolor Mark & Sweep

Pros
● easy to implement
● easy to control the heap growth

Go 1 used a STW Mark & Sweep Garbage Collector

Cons
● external fragmentation
● STW latency proportional to the heap size

Concurrent Tricolor Mark & Sweep

How can we reduce the latencies of Garbage Collection?

Since Go 1.5, the runtime executes GC concurrently to the mutators
code, trading throughput for latency

Since garbage is not reachable by user code, the sweep phase can be
done concurrently

What about the marking phase?

Concurrent Marking
// Mutator code

type Obj struct {

 // ...

 next *Obj

 // ...

}

D.next = E.next

C.next = nil

Concurrent Marking
// Mutator code

type Obj struct {

 // ...

 next *Obj

 // ...

}

D.next = E.next

C.next = nil

Concurrent Marking
// Mutator code

type Obj struct {

 // ...

 next *Obj

 // ...

}

D.next = E.next

C.next = nil

The tricolor invariant does not hold true anymore!

How can we preserve GC correctness while doing it concurrently?

We need a way for the mutator to inform the collector that it is changing the heap
memory graph

Instead of normal pointer operations, the compiler can emit write or read barriers

Is Garbage Collection evil?

*slot = ptr func barrier(slot, ptr) {

 // ...

}

Dijkstra Write Barrier
// Mutator code

D.next = E.next

C.next = nil

// Write Barrier

func writePointer(slot, ptr) {

 shade(ptr)

 *slot = ptr

}

Dijkstra Write Barrier
// Mutator code

D.next = E.next

C.next = nil

// Write Barrier

func writePointer(slot, ptr) {

 shade(ptr)

 *slot = ptr

}

Dijkstra Write Barrier

Pros

● ensures the strong tricolor invariant

● ensures forward progress

Permagrey stacks forces us to rescan all the goroutine stacks that have been

modified during the marking phase!

Cons

● permagrey stacks

Go 1.7 Concurrent GC

Stack rescanning happens with the world stopped at the end of marking: it is a source

of potentially unbounded latency!

Go Hybrid Write Barrier

func writePointer(slot, ptr) {

 shade(*slot)

 if current_stack_is_grey {

 shade(ptr)

 }

 *slot = ptr

}

The Hybrid Write Barrier allows concurrent

stack scanning without rescan!

Go 1.8 introduced a Hybrid Write Barrier: a combination of Dijkstra - style and Yuasa - style

write barriers

Dijkstra - style barrier requires STW stack rescanning at the end of marking

Yuasa - style barrier requires STW stack scanning at the begin of marking

Buffered Write Barrier
type wbBuf struct {

 next uintptr

 end uintptr

 buf [wbBufEntryPointers * wbBufEntries]uintptr

 // ...

}

In Go 1.10 the implementation of the Hybrid
Write Barrier has been optimized
implementing a Buffered Write Barrier

Instead of immediately shading the pointers,
these are saved inside a per P buffer

When it is full, the hybrid write barrier jumps
to the slow path, where it flushes its buffer
and greys all the pointers as usual!

Marking - Grey and Black Objects

A grey object is one that is marked and on a work queue
A black object is one that is marked and not on a work queue

Go dedicates 25% of GOMAXPROCS CPUs
to background marking

To reduce contention Go uses a
distributed work pool to hold objects to
scan

- a global GC work queue
- per P local GC work queues

Heavy Allocating Goroutines

func gcStart(trigger gcTrigger) {

// ...

atomic.Store(&gcBlackenEnabled, 1)

// ...

}

Mark Assist works as a budget system where each allocation is charged based on the size. What

happen when a goroutine exhausts its budget?

First, it tries to steal allocation credits from the background marking goroutines. If there isn’t

enough, the goroutine is forced to assist in marking, slowing down its the allocation rate

What happen if a goroutine allocates too heavily?

To avoid outrunning the heap size goal, the GC enable Mark Assist

How the Mark Phase ends?
Mark Termination Algorithm rewritten in Go 1.12

Since Go uses a distributed work queue, a distributed mark completion algorithm is
needed

When a P reaches a background mark completion point

1) Acquire work.markDoneSema semaphore to make sure no other Ps is running
the algorithm

2) Check if there is global work to do, if so, abort the algorithm
3) On each P

a) Flush local write barrier buffer
b) Flush local GC work queue

4) Check gcMarkDoneFlushed flag to see if at least one P has flushed some work.
If so, abort the algorithm, otherwise enter Mark Termination Phase

Go Garbage Collector Phases

STW pauses are used to enable/disable the
Write Barrier and are not proportional to the
heap size anymore!

When a collection cycle should start?

With GOGC environment variable the user sets a heap goal

GOGC default value is 100

STW Mark and Sweep Trigger

When the Heap Size is equal to the Heap Goal, we stop the world and run a collection!

Concurrent Mark and Sweep Trigger
Since we are marking concurrently, the Heap Trigger must be set before the Heap Goal

The GC Pacer algorithm decides the trigger trying to
- minimize distance between Heap Size Goal and Effective Heap Size
- minimize distance between CPU Utilization Goal and Effective CPU Utilization

The GC pacer estimates the marking work based on the last GC marking cycle

Sweep Phase

s.allocBits = s.gcmarkBits

s.gcmarkBits = newMarkBits(s.nelems)

Sweep a span is very fast but...

… since sweeping modifies the span metadata it must be completed before the next marking

phase!

Each mspan holds two metadata fields
- allocBits pointer to a bitmap of allocated objects in span
- gcmarkBits pointer to a bitmap of marked objects in span

Sweep a span simply means assigning gcmarkBits to allocbits and allocate a zeroed
gcmarkBits ready for the next marking phase

Proportional Sweeping

To avoid delays in the enabling of mutator assists, Go uses
- lazy sweeping while allocating
- background concurrent sweeping

Sweeping rate is based on a budget system just like the proportional
marking

The sweeping rate is decided by the GC Pacer, taking into account
- number of sweepable pages
- distance between heap live at the end of the last marking and the

heap trigger

Go GC Performance Impact

GC Impact Summary

● STW pauses at the beginning and at the end of each cycle
● 25% CPUs dedicated to Background Marking
● Mark Assist
● Write Barrier on during each cycle
● Background and lazy sweeping

Go GC SLOs

Go GC Service Level Objectives for 2018 from Rick Hudson’s ISMM
Keynote “Getting to Go”

$./garbage
pkg: golang.org/x/benchmarks
goos: linux
goarch: amd64

BenchmarkGarbage/benchmem-MB=64-8 5000 ... 75430 STW-ns/GC ...

Typical STW pauses ~ tenths of microseconds

Throughput and Floating garbage

The GC retains objects that are reachable at some point during marking, even if they are not at the
end of the cycle, due to the mutator executing concurrently

The collector marks A and B objects as shown

The mutator deletes the pointer to B

At the end of marking, B is black

Am I experiencing GC pressure?

Minimum Mutator Utilization curve

● x axis ⇒ time
● y axis ⇒ fraction of CPU time spent in the

mutator (CPU utilisation)

● y-intercept ⇒ mutators’ overall share of
processor time

● x-intercept ⇒ maximum pause time

Am I experiencing GC pressure?

GC Trace

$ GODEBUG=gctrace=1 ./garbage

gc 1 @0.006s 0%: 0.015+0.21+0.020 ms clock, 0.12+0/0.14/0.27+0.16 ms cpu, 0->0->0 MB, 4 MB goal, 8 P (forced)
gc 2 @0.007s 1%: 0.012+0.16+0.015 ms clock, 0.097+0/0.17/0.25+0.12 ms cpu, 0->0->0 MB, 4 MB goal, 8 P (forced)
gc 3 @0.028s 1%: 0.014+2.0+0.023 ms clock, 0.11+0.087/2.6/5.5+0.18 ms cpu, 4->4->2 MB, 5 MB goal, 8 P
...

Format described here

https://golang.org/pkg/runtime/#hdr-Environment_Variables

In a nutshell
Less allocations on the heap

Write Barrier on for less time, less assist and less floating garbage

Less marking work

Shorter GC cycle

Value vs Pointers

type Time struct {

 wall uint64

 ext int64

 loc *Location

}

Scanning time is roughly linear in the number of pointers scanned

● Use escape analysis to ask the compiler where it is allocating and why
● Prefer copying values instead of passing a pointer
● Consider refactoring to avoid pointers in your types

Example: did you know about the pointer in the Time
type?

Struct Layout

// Type size: 80 bytes

type S struct {

 a string

 b bool

 c string

 d *string

 e byte

 f []byte

}

Consider struct packing: check out Golang Sizeof Tips for a visual explanation

http://golang-sizeof.tips

Struct Layout

// Type size: 72 bytes

type S struct {

 e byte

 b bool

 a string

 c string

 d *string

 f []byte

}

Consider struct packing: check out Golang Sizeof Tips for a visual explanation

http://golang-sizeof.tips

Reuse Memory
var pool = sync.Pool{

 New: func() interface{} {

 return make([]byte, 1024)

 },

}

func f() {

 buf := pool.Get().([]byte) // reuses from pool or calls New

 // do work

 pool.Put(buf) // returns it to the pool

}

sync.Pool has been updated in Go 1.13 introducing a victim cache

Garbage Collector Tuning

GOGC knob: trading memory for CPU utilization

You can change it at runtime too:
runtime/debug.SetGCPercent

The heap growth becomes harder to control

Increasing GOGC

Increasing GOGC

A Glimpse of the (possible) Future

runtime.SetMaxHeap

Targeting the heap size instead of the heap growing ratio is handy If your
application:

- have a small live heap
- a very high allocation rate
- enough free memory to use

Currently, the GC has no knowledge of the total available heap memory, but it may
know it with the proposed API.

See issue #16843 for more details!

https://github.com/golang/go/issues/16843

Thank You!

fabio.falzoi84@gmail.com

github.com/Pippolo84

@Pippolo84

Contacts

