
Building API:
swagger, grpc, graphql

What to choose, how to use,
and how to survive

Daniel Podolsky, AnchorFree

Who am I

•

Disclaimer

● This is a survey
● As light as possible

■ Because I hate surveys
● Not everything I’m talking about

I’ve tried in prod
○ For the reason

● Captain Obvious says “Hi!”
○ Let’s read the manuals loudly!

Some theory: What is network API

● from the programming language
point of view
○ Some glue code
○ Some tools
○ Documentation

Some theory: What is network API

● Pull, push, poll and events
○ From client to server: easy
○ From server to client: not so easy

Some theory: REST and RPC

● CRUD
○ Good
○ But not good enough

● RPC
○ Flexible
○ Sometime too much flexible

Some theory: What is network API, under the hood

● Call convention
● Marshaling
● Transport

Some theory: client side

● Go
● No so Go

Some practice: OpenAPI

● AKA swagger
● Born for REST
● Request-response + JSON + HTTP 1.1 + DSL

+ codegen/docgen
○ Yes, codegen!
○ There is more than one way to use it

■ But just one is a proper one

Some practice: OpenAPI, Tools, Go

● go-swagger
○ OpenAPI v2 only
○ Code quality is not so high

● oapi-codegen
○ OpenAPI v3, partially supported
○ Looks promising

Some practice: OpenAPI, other tools

● Swagger codegen
● Swagger editor

○ Good to have

Some practice: OpenAPI, Pros

● The standard
○ I mean it

● Native support in browsers
● Documentation is excellent

Some practice: OpenAPI, Cons

● JSON is slow in Go
○ Even with easyJSON

● No streams
○ No pushes, no events

● HTTP-bonded
● CRUD is tough

○ No way to keep your team on the CRUD way

Some practice: OpenAPI, How to survive

● As strict as possible
● Build your own RPC standard

○ And document it
● Always start with swagger.yml

○ I mean it
○ The only way to keep your code and doc

in sync

Some practice: gRPC

● Request-response-push-events +
protobuf + HTTP/2 + codegen
○ Yes, codegen!
○ Self-documented

■ Or pretend to be

Some practice: gRPC, Tools, Go

● protoc

Some practice: gRPC, other Tools

● uber/prototool
○ Must have

● grpc/grpc-web
● grpc-ecosystem/grpc-gateway

○ REST-to-gRPC reverse proxy
○ codegen

Some practice: gRPC, Pros

● The standard
● Client-server, server-client

and bidirectional streams
● Reach and powerful ecosystem

Some practice: gRPC, Cons

● No streams native browser support
● No streams in non-native browser support
● Verification apart from type compatibility

is on you
● HTTP/2-bonded

○ You can get some freedom
with custom dialer

Some practice: gRPC, How to survive

● Use prototool
● Use go generate wisely
● Use protoc.cfg
● Use option go_package

Some practice: GraphQL

● I did not use it
○ For the reason

Some practice: GraphQL

● Freeeeedom!!!!!11

○ The main idea is to untight frontend
changes delivery from backend changes
delivery

■ As in “backend is ready to provide any
data available, just ask”

Some practice: GraphQL

● Frontend oriented

● Request-response + JSON +
HTTP 1.1 + DSL+ codegen (optional)

○ As a matter of fact GraphQL itself is
transport and marshaler agnostic

Some practice: GraphQL, Tools, Go

● graphql-go
○ Runtime schema parser

● gqlgen
○ Codegen

Some practice: GraphQL, Tools, Go

● graph-gophers/dataloader
○ Cache
○ Dedup
○ Optimisation
○ Nothing like this

in the other API builders!

Some practice: GraphQL, other Tools

● GraphQL API Explorer
● graphql-playground

Some practice: GraphQL, Pros

● Flexible
○ In all means

● Modern

Some practice: GraphQL, Cons
● Not a standard

○ Yet
● No streams
● No blobs (no way to return file to browser)
● Difficult to control the performance and

security on backend side
○ Bad-formed query can explode your

backend. Or evil-formed...

Some practice: GraphQL, how to survive

● Actually, I do not know
○ But this is a future, so be prepared

Some practice: GraphQL, how to survive

● Try query complexity analysis
○ query depth limit
○ query cost analysis
○ query whitelisting

■ No more freedom,
no more flexibility

Some practice: GraphQL, how to survive

● Dataloaders

Some practice: GraphQL

● Special thanks to Roman Sharkov
○ tg: @Romshark

Some practice: Twirp

● I did not use it
● Request-response + protobuf/JSON +

HTTP 1.1 + codegen
○ Codegen again
○ Self-documented

■ Or pretend to be

Some practice: Twirp, Tools

● Some of gRPC tools could be used

Some practice: Twirp, Pros

● Born for Go
● Simple
● HTTP 1.1
● Mixable with other handlers
● JS client

Some practice: Twirp, Cons

● Not a standard
● No streams
● Verification

apart from type compatibility
is on you

Some practice: Twirp, how to survive

● No idea

Some practice: Vulcain

● I did not use it
● Quite exotic

○ hypermedia API
○ Could be used as a gateway

on top of traditional API.
● Frontend oriented
● Request-response-events + JSON + HTTP/2

Some practice: Vulcain, Tools

● No idea

Some practice: Vulcain, Pros

● Must be effective
○ Caching
○ Interrupting download

● GraphQL compatibility mode
● OpenAPI compatibility mode

Some practice: Vulcain, Cons

● Not a standard
● HTTP/2 bonded

Some practice: Vulcain, how to survive

● No idea

Some practice: JSON-RPC 2.0

● Absolutely perfect
○ As a spheroidal horse

in the vacuum environment
● Very simple spec

○ Nothing useless
■ IMHO, nothing useful

● Request-response + JSON

Some practice: JSON-RPC 2.0, Tools, Go

● net/rpc plugin(s)

Some practice: JSON-RPC 2.0, Pros

● Simple
● Flexible

Some practice: JSON-RPC 2.0, Cons
● Cons

○ Not a standard
■ Not any more

○ No streams
○ No blobs (no way to return file to browser)
○ All the boilerplate except

marshaling-unmarshaling is on you
■ Even doc

Some practice: JSON-RPC 2.0, how to survive

● Try to avoid
● So help you God

Conclusions

● To communicate with clients,
right here, right now
○ OpenAPI

■ Best validators spec
■ Best doc generator

Conclusions

● To communicate between servers
○ gRPC

■ Streams

Conclusions

● For the future
○ GraphQL

■ Modern
■ Flexible

Thank you!

Questions
are welcome!

Daniel Podolsky
daniel@djarvur.net

mailto:daniel@djarvur.net

